Introduction to Environmental Science
EVR2001 Section 1F81 (3 credit hours)
Spring Semester 2017
Tuesday Periods 8 - 9 (3 PM - 4:55 PM)
and Thursday, Period 9 (4:05 PM - 4:55 PM) in Fine Arts B Room 103

Instructor
Danny Coenen, Ph.D.
Office Location: McCarty D, Room 2047
Office Hours: T 12 – 1:30 or by appt.
Email: dcoenen@ufl.edu
Phone: TBA
Course web site: Canvas (http://elearning.ufl.edu/)

Teaching Assistant
Jennifer Adler
Office Location: TBA
Office Hours: TBA
E-mail: jennifermadler@ufl.edu
Phone: TBA

Course Description
Delivered from a systems perspective, an interdisciplinary approach explores contemporary environments that are comprised of both human and non-human elements. Explores physical, chemical, and biological processes to understand pressing environmental challenges and cultural values, attitudes, and norms expressed by individuals and populations around the globe.

Course Overview and Purpose
Environmental Science is an interdisciplinary academic field that integrates physical, biological, and social sciences for the study of environmental systems, processes, constraints, and problems. Throughout history, nature has contributed to shaping human culture. In turn, a growing human population and continued economic and technological development subjects the environments of our planet to a large number of stresses, in some cases threatening their persistence and often resulting in undesirable consequences for humanity. The interdependence of physical, biological, and cultural aspects in shaping contemporary environments lies at the heart of environmental science.

This general education course introduces students to environmental science as an academic field to improve their environmental literacy while developing skills in scientific reasoning, interdisciplinary thinking and analysis of complex social-ecological environmental issues. Heavy emphasis is placed on international perspectives on environmental problems and solutions to emphasize the important role of culture in environmental matters.

Prerequisites
None

Required Textbook
Additional required readings will be made accessible via Canvas.

General Education Objectives and Student Learning Outcomes
This course is a physical (P) and biological (B) sciences as well as International (N) subject area course in the UF General Education Program.
Biological science courses provide instruction in the basic concepts, theories and terms of the scientific method in the context of the life sciences. Courses focus on major scientific developments and their impacts on society, science and the environment, and the relevant processes that govern biological systems. Students will formulate empirically-testable hypotheses derived from the study of living things, apply logical reasoning skills through scientific criticism and argument, and apply techniques of discovery and critical thinking to evaluate outcomes of experiments.

Physical science courses provide instruction in the basic concepts, theories and terms of the scientific method in the context of the physical sciences. Courses focus on major scientific developments and their impacts on society, science and the environment, and the relevant processes that govern physical systems. Students will formulate empirically-testable hypotheses derived from the study of physical processes, apply logical reasoning skills through scientific criticism and argument, and apply techniques of discovery and critical thinking to evaluate outcomes of experiments.

International courses provide instruction in the values, attitudes and norms that constitute the contemporary cultures of countries outside the United States. These courses lead students to understand how geographic location and socioeconomic factors affect these cultures and the lives of citizens in other countries. Through analysis and evaluation of the student’s own cultural norms and values in relation to those held by the citizens of other countries, they will develop a cross-cultural understanding of the rest of the contemporary world.

These general education objectives will be accomplished in the context of this course through the following objectives:

1) Students will understand the process of scientific inquiry and gain the ability to apply scientific principles in cross-cultural and interdisciplinary contexts.
2) Students will be able to explain that ecosystems are comprised of physical and biological elements whose interactions engender ecosystem functions that provide humanity with a diverse array of ecological services.
3) Students will be able to describe the complex and diverse relationships between humans and environments around the world, including how cultural values shape patterns of resource use and valuation of ecological services.
4) Students will be able to compare and contrast non-renewable, exhaustible, and inexhaustible material and energy resources, the physical and biological processes through which they are created, and associated environmental constraints.
5) Students will be able to develop and communicate interdisciplinary approaches to evaluating and proposing solutions for environmental problems, taking into account scientific and socioeconomic information, including cultural and political constraints.
6) Students will gain the ability to consider environmental impacts of behaviors, choices, and activities into everyday decision making in their personal lives.

Specific weekly learning outcomes are listed in the course timeline. At the end of the course, students will have achieved the following student learning outcomes (SLOs) in content, communication, and critical thinking:

<table>
<thead>
<tr>
<th>Category</th>
<th>Institutional Definition</th>
<th>Institutional SLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Content is knowledge of the terminology, concepts, methodologies and theories used within the subject area.</td>
<td>Students demonstrate competence in the terminology, concepts, methodologies and theories used within the subject area.</td>
</tr>
<tr>
<td></td>
<td>1.) Students will identify, describe, and explain the basic concepts, theories and terminology of natural science and the scientific method in environmental science. They will identify, describe, and explain the major scientific developments within the subject area and the impacts on society and the environment. They will identify, describe, and explain relevant processes that govern biological and physical systems within the subject area.</td>
<td></td>
</tr>
</tbody>
</table>
Implementation: Through lecture, discussion, readings, and activities, students will acquire knowledge of the physical and biological structures and processes that shape Earth’s ecosystems, natural resources, and environmental issues.

Assessment: Achievement of these learning outcomes will be assessed through two examinations, three quizzes, weekly engagement preparation assignments, and graded in-class activities (part of students’ class attendance and engagement grade).

2.) Students will identify, describe, and explain the values, attitudes and norms that shape the cultural differences of peoples who live in countries other than the United States. They will identify, describe, and explain the roles of geographic location and socioeconomic factors on the lives of citizens in other countries.

Implementation: Through lecture, discussion, readings, and activities, students will acquire knowledge of how Earth’s ecosystems, natural resources, and environmental issues vary by geographic location, and how they are differently impacted by humanity in various cultural contexts.

Assessment: Achievement of these learning outcomes will be assessed through two examinations, three quizzes, weekly engagement preparation assignments, and in-class activities (part of students’ class attendance and engagement grade).

<table>
<thead>
<tr>
<th>Critical Thinking</th>
<th>Students carefully and logically analyze information from multiple perspectives and develop reasoned solutions to problems within the subject area.</th>
</tr>
</thead>
</table>

1.) Students will formulate empirically-testable hypotheses derived from the study of physical processes or living things within the subject area. They will apply logical reasoning skills effectively through scientific criticism and argument within the subject area. They will apply techniques of discovery and critical thinking effectively to solve experiments and to evaluate outcomes.

Implementation: Critical thinking is key to understanding the complex social-ecological systems that shape our planet, and required to gain tangible skills needed to apply scientific principles necessary to address contemporary and emerging environmental issues. A key part of critical thinking in science is the formulation of hypotheses and applying sound methodologies to observationally or experimentally support or reject these hypotheses. These skills will be taught to students through lecture and reading materials, and applied through discussion, activities, and assignments.

Assessment: Achievement of this learning outcome will be assessed through multiple means. Students will work with physical, biological, and hybrid datasets for hypothesis formulation and testing as part of engagement preparation assignments and graded in-class activities. The international environmental case study presentation assignment prompts teams of students to apply scientific skills to propose biologically and physically possible, economically feasible, and culturally appropriate solutions to environmental problems. The final essay will prompt students to critically reflect on how material learned throughout the semester has influenced their personal and professional outlook on environmental issues.
2.) Students will analyze and evaluate their own cultural norms and values in relation to those held by citizens in other countries.

Implementation: Students will compare and contrast course concepts as they apply to international case studies to highlight commonalities and key differences in how environmental problems arise and are addressed in different cultural and socioeconomic contexts. These case studies are part of the weekly curriculum and will be explored through lecture, discussion, and activities.

Assessment: For the global article analysis assignments, students will critically compare international and domestic perspectives on environmental topics. The international environmental case study presentation assignment prompts teams of students to apply scientific skills to propose biologically and physically possible, economically feasible, and culturally appropriate solutions to environmental problems. In-class activities (part of students' class attendance and engagement grade) complement assessment of this learning objective.

| Communication | Communication is the development and expression of ideas in written and oral forms. | Students clearly and effectively communicate knowledge, ideas, and reasoning in written or oral forms appropriate to the subject area. |

1.) Students will communicate scientific findings clearly and effectively using oral, written and/or graphic forms.

Implementation: Being able to communicate scientific concepts clearly, both orally and in writing, are essential skills. This includes the ability to communicate scientific and social aspects of environmental issues.

Assessment: Achievement of this learning outcome will be assessed through students' participation in class discussions (part of students' class attendance and engagement grade), the clarity of information dissemination in the international case study presentation, and the various writing assignments in this class.

Grading Policies

The final grade for this course is based on a 1000-point scale and will be weighted as follows:

<table>
<thead>
<tr>
<th>Grade Component</th>
<th>Points</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Attendance and Engagement</td>
<td>100</td>
<td>10.0%</td>
</tr>
<tr>
<td>Engagement Preparation (12 × 10 points)</td>
<td>120</td>
<td>12.0%</td>
</tr>
<tr>
<td>Global Article Analyses (3 × 40 points)</td>
<td>120</td>
<td>12.0%</td>
</tr>
<tr>
<td>International Environmental Case Study Presentation</td>
<td>150</td>
<td>15.0%</td>
</tr>
<tr>
<td>Final Essay</td>
<td>135</td>
<td>13.5%</td>
</tr>
<tr>
<td>Quizzes (3 × 25 points)</td>
<td>75</td>
<td>7.5%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>150</td>
<td>15.0%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>150</td>
<td>15.0%</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>
Grading scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
<th>Percent</th>
<th>Grade</th>
<th>Points</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>930-1000</td>
<td>93.0-100.0%</td>
<td>C:</td>
<td>730-769</td>
<td>73.0-76.9%</td>
</tr>
<tr>
<td>A-</td>
<td>900-929</td>
<td>90.0-92.9%</td>
<td>C-</td>
<td>700-729</td>
<td>70.0-72.9%</td>
</tr>
<tr>
<td>B+</td>
<td>870-899</td>
<td>87.0-89.9%</td>
<td>D+</td>
<td>670-699</td>
<td>67.0-69.9%</td>
</tr>
<tr>
<td>B:</td>
<td>830-869</td>
<td>83.0-86.9%</td>
<td>D:</td>
<td>630-669</td>
<td>63.0-66.9%</td>
</tr>
<tr>
<td>B-</td>
<td>800-829</td>
<td>80.0-82.9%</td>
<td>D-</td>
<td>600-629</td>
<td>60.0-62.9%</td>
</tr>
<tr>
<td>C+</td>
<td>770-799</td>
<td>77.0-79.9%</td>
<td>E:</td>
<td>0-599</td>
<td>0.0-59.9%</td>
</tr>
</tbody>
</table>

Class Attendance and Engagement: Students significantly contribute to creating a comfortable and productive learning environment by attending and participating in class. Students are encouraged to challenge themselves and others’ ideas and thoughts in a collegial manner. Each student’s contribution is valuable to our class. I encourage questions and sharing of relevant experiences! Grades are based on attendance, as well as frequency and quality of student contributions to the class, including in-class activities.

Engagement Preparation: Each week, students complete readings and respond to questions that reinforce the read material. These assignments typically take the form of 400-500 word essays. Emphasis will be placed on developing and applying scientific reasoning skills, such as formulating hypotheses and interpreting empirical data. There are 12 total engagement preparations to be completed during the semester. Responses to questions are to be submitted online no later than the beginning of class on the due date. Grades are based on quality and completeness of the work submitted.

Global Article Analysis: For each global article analysis, students identify an environmental topic covered in class and locate two related articles (news, popular, or refereed). One article will cover the topic from a domestic perspective, while the other article covers the same topic from an international perspective. Students critically analyze the biological, physical, and cultural differences between domestic and international perspectives on the selected topic in an 800-1000 word essay. There are three total global article analyses, which are due by 9:00 PM on the due date. Grading is based on quality and completeness of the work submitted, as well as clarity of writing.

International Environmental Case Study Presentation: Teams of students apply scientific methodology to formulate and disseminate a biologically and physically possible, economically feasible, and culturally appropriate solution to a controversial environmental issue outside of the United States to the class. Team presentations are no more than 10 minutes in length, and creativity of visual and oral dissemination methods is encouraged. Grading is based on clarity and quality of presentation materials and narration, plausibility of the proposed solution, and creativity in presentation design and information dissemination.

Final Essay: Upon completion of the class, students will write a 1200-1500 word reflection essay highlighting the impact of class on the student as an individual and ways in which the class changed how the student approaches environmental science issues on personal and professional levels. Grading is based on the quality of writing and cohesiveness of the narrative, and specificity with respect to referencing particular materials, assignments, and activities.

Quizzes: There will be four online quizzes to assess if students are keeping up with and understanding course materials. These may be announced on short notice. The lowest quiz grade will be dropped.

Exams: There are two 50-minute exams during the semester that will assess comprehension of course content using a variety of question styles, including multiple choice, fill-in-the-blank, short answer, and matching. Grading is based on the number of correct answers.

Specific grading criteria for each assignment will be provided via Canvas. Students are responsible for maintaining duplicate copies of all work submitted in this course and retaining all returned, graded work until the semester is over. Should the need arise for a re-submission of papers or a review of graded submissions, it is the student's
responsibility to make these materials available. In case of a grading dispute, students must notify the instructor via e-mail within three days of the date the assignment is returned in class or on Canvas. Information on current UF grading policies for assigning grade points can be found at https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx. A minimum grade of C is required for general education credit.

Course Policies

Attendance Policy: Attendance is taken daily. Students are permitted two unexcused absences without grade penalty. Additional unexcused absences incur a score of zero for the day's Class Attendance and Engagement. Point deductions may also be incurred for repeated tardiness. If a student accumulates more than eight unexcused absences during the semester, they will receive an automatic grade of E for the course.

Absences due to academic conferences, religious holidays, and certain university-sponsored events will be excused if appropriate documentation is provided ahead of time. Absences due to illness will be excused if a doctor's note is provided within one week of returning to class. Undocumented illnesses will not be excused.

If absent, it is the student’s responsibility to make themselves aware of all due dates via the course e-learning site and/or contacting the instructor. Students are still responsible for turning assignments in on time unless an extension has been requested via e-mail and approved by the instructor prior to the deadline. In case of true documented emergencies, the instructor may waive this requirement at his discretion.

Make-up Policy: Work missed due to excused absences can be made up. For absences excused ahead of time, the instructor will develop a make-up plan and schedule. In case of documented illnesses or emergencies, arrangements for completing make-up exams or assignments should be made upon return to class. If experiencing truly extenuating circumstances resulting in longer absences, the instructor should be notified as soon as possible to develop a plan to make up missed work. Any requests for make-ups due to technical issues must be accompanied by the ticket number from e-Learning Support Services when the problem was reported to them. The ticket number will document the time and date of the problem. The instructor must be e-mailed within 24 hours of the technical difficulty if you wish to request a make-up. Please refer to the section of Campus Helping Resources in this syllabus for contact information for the e-Learning Support Services.

More information regarding class attendance and make-up policies for class work are consistent with University of Florida policies and can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx.

Late Work: For each day written assignments are submitted late, I will subtract 10% from the assignment grade. If the assignment is more than five days late, a score of 0 will be entered. I highly recommend starting work on assignments early to preclude unexpected emergencies or late-semester stress from compromising your grade. Deadline extensions may be available on certain assignments if requested ahead of time via e-mail. If extended deadlines are not met, late penalties will be assessed based on the original, not the revised due date!

Finally, please do not wait until the end of the semester to discuss problems with the course material or performance in class. Your performance and success are important to the instructor and University of Florida, so please contact the instructor to discuss your concerns as soon as they arise.

Engagement preparations must be submitted on the due date; no credit will be given for engagement preparations that are submitted on a later day.

Office Hours: Please take advantage of office hours to discuss any questions or concerns. The instructor may also request that a student visit his office hour. If you cannot be present for the regularly scheduled office hour, the instructor will attempt to accommodate you at an alternate time.

Course Communications and Technology: The preferred way to get ahold of me outside of class and office hours is via e-mail addressed to dcoenen@ufl.edu. All students are expected to check the course web site on Canvas (http://elearning.ufl.edu) on a daily basis. Please ensure that you have access to this service. Grades are posted there.
University of Florida Policies

Academic Honesty and Plagiarism
Academic honesty and integrity are fundamental values of the University community. University of Florida students are bound by The Honor Pledge, which states "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment"." The UF Honor Code is available in its full form at http://www.dso.ufl.edu/sscr/process/student-conduct-honor-code/. It specifies a number of behaviors that are in violation of this code and the possible sanctions. You should be sure to read and understand the Honor Code in its entirety. Furthermore, you are obligated to report any conditions that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor of this class.

The instructor emphasizes that **PLAGIARISM, WHETHER INTENTIONAL OR UNINTENTIONAL, IS A SERIOUS AND POTENTIALLY CAREER-ENDING FORM OF ACADEMIC MISCONDUCT.**

Software Use
All UF faculty, staff and students are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, appropriate disciplinary action will be taken.

Students with Disabilities
Students requesting accommodation for disabilities must first register with the Disability Resource Center (DRC). The DRC coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Upon registering, the DRC will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation. You must submit this documentation prior to submitting assignments or taking quizzes or exams. Accommodations are not retroactive, therefore, students should contact the office as soon as possible in the term for which they are seeking accommodations. The DRC may be contacted by visiting 001 Reid Hall, calling 352-392-8565, or visiting their web site at www.dso.ufl.edu/drc/.

Course Evaluation
Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or three weeks of the semester. Students will be given specific times when the evaluations are available. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

Campus Helping Resources
Your well-being is important to me and the University of Florida community. Students experiencing crises or personal problems that interfere with their general well-being or academic performance are strongly encouraged to talk to the instructor or take advantage of the university's counseling resources, available at no cost for currently enrolled students.

- **University Counseling Center & Wellness Center**, 3190 Radio Rd., 392-1575. Personal and career counseling, as well as therapy for anxiety, stress and mental health issues. http://www.counseling.ufl.edu/cwc/
- **Dean of Students Office**, 202 Peabody Hall, 392-1261. Among other services, the DSO assists students who are experiencing situations that compromises their ability to attend classes. This includes family emergencies and medical issues (including mental health crises). https://www.dso.ufl.edu/care
- **Teaching Center**, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. http://teachingcenter.ufl.edu/
Course Topics, Timeline, and Detailed Learning Objectives

Each week, we will explore an environmental science topic from a cross-cultural, international perspective. Class meetings provide content through lecture, discussion, and activities.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Specific Foci</th>
<th>Assignments Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 5-10</td>
<td>Understanding the Global Environment</td>
<td>What is Environmental Science? none</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific process and inquiry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major environmental issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human and cultural pressures</td>
<td></td>
</tr>
</tbody>
</table>

Learning Objectives in Physical(P)/Biological (B), and International (N) Subject Areas:
P/B: Students will review what science is, how scientific research is conducted and disseminated, and be introduced to environmental science as an interdisciplinary academic field. In teams, students will be assigned a physical or biological science issue and will practice how to formulate valid hypotheses and propose methodologies for testing their hypotheses.
N: Students will be introduced to the importance of cultural and socioeconomic contexts in environmental science through an overview of environmental issues in different countries.

Jan 12-17 Geology and Biogeochemistry Biogeochemical Cycles (C, N, P) Geology and Earth Systems Engagement Prep. 1 (Jan 12)

Learning Objectives:
P/B: Students will understand how carbon, nitrogen, and phosphorous cycle through the earth system via physical, chemical, and biological pathways. Students will review how plate tectonics creates a dynamic planet with volcanism and earthquakes.
N: Students will explore differences in resilience to natural disasters between different countries by comparing impacts of the 2010 Haiti earthquake and the 2011 Tōhoku earthquake in Japan.

Jan 19-26 Ecosystems Biomes - Global Pattern of Life Engagement Prep. 2 (Jan 19)

Learning Objectives:
P/B: Students will learn what biomes are and how climatic constraints are the primary driver of differentiation between them. Students will further gain an understanding how ecosystem structure and function engender ecological services benefitting humanity.
N: Cultural services are one of the four major categories of ecosystem services. Students will explore how nature shapes human culture and well-being in different contexts, and how cultural values shape natural resource extraction preferences and patterns.

Jan 31-Feb 2 Biodiversity Evolutionary Mechanisms Measures of Biodiversity Engagement Prep. 3 (Jan 31)
Learning Objectives:
P/B: Students will understand what biodiversity is and be able to explain how it arises through evolutionary mechanisms. Students will work with species abundance datasets to formulate and test hypotheses regarding diversity of different ecosystems using Simpson’s Diversity Index.
N: Students will learn about impacts of invasive species on islands with high endemism.

Feb 7-9 Population Dynamics Human Population Dynamics Engagement Prep. 4 (Feb 7)
Human Geography Demography Global Article Analysis 1 (Feb 9)

Learning Objectives:
P/B: Students will learn fundamental concepts in demography and learn how rapid human population growth creates pressures on natural resources and ecosystems. They will formulate hypotheses regarding interrelationships between population growth, economic development, and natural resource depletion and support or reject them by referencing data visualized by the Gapminder World web-based software application.
N: Students will compare and contrast population dynamics in various countries, with a focus on how culture and economic development influence growth rates.

Feb 14-16 Energy Thermodynamics Engagement Prep. 5 (Feb 14)
Sources and Generation Evolving Technologies

Learning Objectives:
P/B: Students will differentiate between non-renewable, exhaustible renewable, and inexhaustible renewable energy resources and learn how they are utilized for electricity generation and transportation.
N: Students will learn about how World War II and post-war experiences have created a culture of precautionism in Germany, which has contributed to Germany’s nuclear phase-out and parallel rapid deployment of wind and solar power.

Exam 1 (February 21)

Feb 23-28 Water Water Cycle Engagement Prep. 6 (Feb 23)
Water Pollution Water Use and Management

Learning Objectives:
P/B: Students will understand the hydrologic cycle and the concept of biochemical oxygen demand in aquatic ecosystems.
N: Students will explore water policy in the former Soviet nations Kazakhstan and Uzbekistan to understand the desiccation of the Aral Sea.

Mar 2-14 Air Atmospheric Circulation Engagement Prep. 7 (Mar 2)
Air Pollution Global Article Analysis 2 (Mar 14)
Air Quality Index
Air Management

Learning Objectives:
P/B: Students will understand the structure and components of Earth’s atmosphere, and how it influences transport of airborne pollutants. Major air pollutants and their impacts will be discussed. Data on emissions of ozone-depleting substances and subsequent impacts to the ozone layer will be assessed. Students will learn about the Air Quality Index and identify spatial and temporal patterns of air pollution.
N: Students will explore the causes and impacts of smog in Beijing, China, and steps being taken to alleviate the problem.

Mar 16-21 Agriculture Agricultural Practices Engagement Prep. 8 (Mar 16)
Genetic engineering
Organic agriculture

Learning Objectives:
P/B: Students will understand environmental inputs required for food production, differences between conventional and organic agriculture, and how hybridization and genetic modification are influencing agriculture today.
N: Students learn about the challenges countries in arid regions face with respect to agricultural production. Food security and desertification in the Saharan fringe and Australian outback are discussed using case studies that illustrate the importance of cultural memory and social capital in coping with environmental degradation.
Learning Objectives:
P/B: Students will explore causes for variability in Earth's climate with emphasis on the differences between natural climate variability and anthropogenic climate change. Sea level rise and ocean acidification will be discussed. Students will learn about climate modeling and projected impacts of climate change on species and ecosystems.
N: Students will appreciate climate change as an environmental problem spanning many orders of magnitude in geographic scale in terms of its causes, impacts, and solutions. Students will learn about the plight of the people of Kiribati, whose nation is among the most severely impacted by climate change.

Learning Objectives:
P/B: Students will understand basic concepts in environmental economics, including externalization of costs, market failures, and valuation of natural resources and ecosystem services with emphasis on common and public goods.
N: Students will be introduced to the concept of Payment for Ecosystem Services (PES) as a means to finance conservation and development in developing countries.

Learning Objectives:
P/B: Students will learn about discrepancies between scientific knowledge and assumptions inherent in environmental policies.
N: Students will learn about the contexts in which environmental laws and policies are created, and the challenges of forging international environmental legislation. Examples include the Montreal Protocol, the Kyoto Protocol, and the European Natura 2000 program.

The final essay must be submitted no later than Monday, April 24, at 9:00 PM via Canvas.

Course Alterations
Due to unforeseen circumstances or to enhance class learning opportunities, it may be necessary to alter the information given in this syllabus during the semester. Such changes are not unusual and should be expected. All changes to the syllabus will be announced in class and/or posted to Canvas. It is your responsibility to keep up with any syllabus changes.